Energy simulation, Building and Urban scale

Simon Lannon and Diana Waldron Welsh School of Architecture Cardiff University UK

Modelling Background

Dynamic energy modelling of buildings: Detail model of the building fabric and

energy use, includes;

- Hourly data
- Local weather files
- Occupancy models
- Thermal mass
- Radiative transfer

Why SketchUp?

- Very popular as a design tool in 2012 over 30 million activations
- User Interface
- Great symmetry with HTB2
- Existing models and terrain

VirVil Extension

- Produces HTB2 input files automatically
- Runs the HTB2 model
- Displays results within a design tool
- Retains the detail of the full simulation

002chongo e Configura	i n0.BLK - h ition Grapl	h tb2view hs View Help	_	_		
ata data	ofg ofg		9 9			
_		C. 3	C. 4	C. 5	C. 6	C. 7
Date	Time	T . A	D.# D I			
	10:	Lot Con Gain	Diffuse Rad	solar gain	heater gain	cooler gain
	Hours	KWYh 1	KYYN 1	KYYN 1	KWN 1	KWh 1
		205.0	E1000	Гасто	1702712	0.000
117 17200. 	23.00	-395.8	51668	53650	1/03/13	0.000
28/2/200	23.00	-0.000	6/568	/25/2	1228/44	0.000
317 37200	23.00	385.5	120126	129321	610219	0.000
30/ 4/200.	23.00	-385.5	140076	150639	59560	-66318
31/ 5/200	23.00	979.6	158234	174646	211.7	-206360
307 67200.	23.00	-0.000	148122	160260	0.000	-506433
31/ 7/2003	23.00	0.000	182045	212029	0.000	-1220702
31/ 8/2003	7 23.00	0.000	194686	222245	0.000	-1148739
30/ 9/2003	7 23.00	-348.6	141938	158951	0.000	-509840
1/10/2007	23.00	-631.0	99612	108218	75442	-1499
0/11/2007	23.00	-0.000	61959	65749	619804	0.000
1/12/2003	7 23.00	-0.000	44783	47526	1635131	0.000
1/ 1/2003	7 13.00	14.9	461.1	461.1	0.000	0.000

Ready

NUM FLTR

What it predicts

- Solar radiation falling on a face
- Heating and Cooling Energy demand

- Impact of shape and form on energy performance
- Impact of terrain
- Impact of surrounding buildings
- Impact of shading devices

What it predicts

- Solar radiation falling on a face
- Heating and Cooling Energy demand

- Impact of shape and form on energy performance
- Impact of terrain
- Impact of surrounding buildings
- Impact of shading devices

Solar radiation

HTB2 calculates the Solar radiation falling on each external surface of the model.

- HTB2 uses the direct, diffuse and direct normal solar radiation to calculate the solar radiation falling on an external surface.
- Considers the orientation and tilt of the surface
- If the surface is transparent it models the transmission of solar radiation onto the buildings internal surfaces
- The surround site can be considered using a shading mask, which breaks the sky above the external surface into 324 blocks of 10 by 10 degrees.
- The black blocks are obscured and no direct radiation will pass through it
- The white blocks are clear and the sky can be seen through these.

Shading mask

An example of a shading mask is shown below, the sky view from the purple wall

Shading mask – opposite wall

The opposite wall is the black and grey patch at the bottom.

CARDIFF UNIVERSITY PRIFYSGOL CAERDY

HTB2 Attributes -----23 Type Not defined Face 6 Building 1 Ν File 0 Zone 1 s Solar 0.0Wh/m2 Area 454.2m2 Tilt 0.0° Orientation 0.0 Glazing ratio 50 Heating 0.0kWh Face type wall Cooling 0.0kWh Bld height 16.2m Int wall ratio 0.10 Floor height 3.00m Volume 7865.3m ш

Shading mask - tree

The tree is the large black and grey patch to the bottom left.

Shading mask - wind turbine

CARDIFF UNIVERSITY PRIFYSGOL CAERDY

The wind turbine is the small grey patch to the bottom left.

What it predicts

- Solar radiation falling on a face
- Heating and Cooling Energy demand

- Impact of shape and form on energy performance
- Impact of terrain
- Impact of surrounding buildings
- Impact of shading devices

Heating and Cooling Energy demand

HTB2 calculates the heating and cooling demand for each zone within a model.

- HTB2 considers the internal, ventilation, solar and fabric gains.
- If the heating system is considered it will attempt to condition the spaces to a simple set point for example 21 Degree C for heating. The demand required by the heating system is calculated as a heat balance od the gains to the space.
- The VirVil SketchUp Extension makes each building a zone, and considers the building as a simple representation of all the spaces combined.
- The results from this calculation can be used to predict the annual heating demand for a building.

Heating and Cooling Energy demand

HTB2 calculates the heating and cooling demand for each zone within a model.

• The data can be combined to give monthly data

What it predicts

- Solar radiation falling on a face
- Heating and Cooling Energy demand

- Impact of shape and form on energy performance
- Impact of terrain
- Impact of surrounding buildings
- Impact of shading devices

Impact of shape and form on energy performance

Case studies comparing different urban layouts

High-rise buildings

Mid-rise buildings

Low-rise buildings

	Total Floor Area (m ²)	Total Exposed Area (m ²)
High-rise	6,076	8,456
Mid-rise	6,030	6,027
Low-rise	6,063	12,338

Impact of shape and form on energy performance

Case studies comparing different urban layouts

Normalised data of the annual energy use for Heating kWh/m2

Normalised data of the annual energy use for Cooling kWh/m2

What it predicts

- Solar radiation falling on a face
- Heating and Cooling Energy demand

- Impact of shape and form on energy performance
- Impact of terrain
- Impact of surrounding buildings
- Impact of shading devices

Impact of terrain Case Study : Houses, New Tredegar, Wales

Impact of terrain Case Study : Houses, New Tredegar, Wales

: = vantage point of photo

	Solar radiation No Terrain (kWh/m²⋅a)	Solar radiation Terrain (kWh/m²⋅a)	Change
South- West	1056	847	- 25%
South- East	1023	932	- 10%

What it predicts

- Solar radiation falling on a face
- Heating and Cooling Energy demand

- Impact of shape and form on energy performance
- Impact of terrain
- Impact of surrounding buildings
- Impact of shading devices

What it predicts

- Solar radiation falling on a face
- Heating and Cooling Energy demand

- Impact of shape and form on energy performance
- Impact of terrain
- Impact of surrounding buildings
- Impact of shading devices

Impact of shading devices

Thank you

Simon Lannon and Diana Waldron Welsh School of Architecture Cardiff University UK